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Abstract

A brief account of the life and work of IstvánVincze, a prominent Hungarian statistician, is given. His
contributions in various topics are discussed.They include empirical distribution, Kolmogorov–Smirnov
statistics, information theory, Cramér–Fréchet–Rao inequality, estimation of density, and a character-
ization problem.
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1. Introduction

István Vincze was born in Szeged, Hungary, on February 26, 1912. After his graduation
from the University of Szeged in 1935, he worked for a Hungarian Insurance Company
until 1945. The second world war interrupted his career. After the war, he worked for the
Ministry of Education until 1950. Then, he was invited by the late Alfréd Rényi to join
an Institute, whose main duty was set to do both theoretical and applied Mathematics. In
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this way, he became one of the founders of the Mathematical Institute of the Hungarian
Academy, whose director was Alfréd Rényi. Vincze was the Head of the Statistics De-
partment until his retirement in 1980, and during 1950–1964 he also served as Deputy
Director of the Institute. He was also a Professor in Statistics at the Eötvös Loránd Uni-
versity, Budapest. I had the privilege to be one of his numerous students in Statistics.
He was considered as one of the main experts in both Theoretical and Applied Statistics
in Hungary and also all over the world. Although in the early stage of his research ac-
tivity he was interested in Geometry, on which he wrote several papers, including joint
papers with Erd˝os, he has made significant contributions to several branches of Statistics,
such as Quality Control, Nonparametric Statistics, Empirical distributions, Cramér–Rao
inequality, Information Theory, etc. He is the author of more than 100 research papers and
10 books.

He was awarded a number of honors in his life, including the Hungarian State Prize in
1966 and Gauss Ehrenplakette in 1978.

Except for the last two years of his life, he was very active even when he was over
80. He worked regularly in the Mathematical Institute, gave seminar talks, participated
in conferences, such as Probastat, Bratislava, 1991 and 1994, Stochastic Modeling and
Lattice Path Combinatorics, Delhi, 1994, Stability Problems, Kazan, 1995, Approxima-
tion Theory, Budapest, 1995, Statistical Conference, Poland, 1996. He was invited to the
Combinatorial Methods Conference, Hamilton, Canada, 1997. He wrote a paper for the
occasion (seeVincze and T˝orös, 1997), but an unfortunate accident prevented him from
participating.

Professor István Vincze visited many universities and institutes all over the world. He
spent several months in China, GDR, USA, Canada, Argentina, etc. He was invited as
speaker to several conferences, including three Berkeley Symposiums: 1960, 1965, 1970.
He also organized a number of conferences: European Meeting of Statisticians in Budapest,
1972, Nonparametric Statistical Inference in Budapest, 1980, Pannonian Symposiums on
Mathematical Statistics in Bad Tatzmannsdorf in 1979, 1981 and 1983, and in Visegrád,
Hungary, 1982. He was the director of the Unesco courses on Probability and Statistics,
held in the Mathematical Institute, Budapest in 1964 and 1968.

Professor Vincze was a very kind man, and his hospitality was legendary. He would walk
with his guests through Budapest an entire day to show them the most important tourist
attractions and serve as a real guide to explain the history of Hungary attached to a particular
building and place. He was physically vigorous all his life.

István Vincze will be remembered by the statistical community for his warmth, humanity
and friendliness.

In this paper, we summarize the most important contributions of Professor István Vincze
in the following areas, focusing mainly on the first topic, but mentioning briefly his contri-
butions in other subjects as well:

• empirical distribution, random walk, lattice paths,
• information theory,
• Cramér–Fréchet–Rao inequality,
• estimation of density and its derivatives,
• a characterization problem.
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2. Empirical distribution, random walk, lattice paths

Professor Vincze was the main contributor to the theory of empirical distributions and
random walks (lattice paths), which were among his favorite topics. Consider a random
sample

(X1, X2, . . . , Xn)

of sizen, coming from a population with (theoretical) distribution functionF(x)=P(X1�x).
The empirical or sample distribution function is defined by

Fn(x)= 1

n

n∑
i=1

I {Xi�x},

where I {A} stands for the indicator of the eventA. Empirical distribution functions are
widely used in statistics, nonparametric statistics in particular. In the two-sample case,
Gnedenko and Korolyuk (1951)developed a method based on random walk models. Let
(X1, X2, . . . , Xn) and (Y1, Y2, . . . , Ym) be two samples coming from continuous
distributions. LetF(x) andG(x) resp. be their theoretical distribution functions and let
Fn(x) andGm(x) resp. be their empirical distribution functions. Testing the null hy-
pothesis H0 : F(x) = G(x), a number of statistics have been investigated and their
distributions, limiting distributions and other characteristics have been determined
in the statistical literature. The idea of Gnedenko and Korolyuk was as follows:
let

Z∗
1<Z

∗
2< · · ·<Z∗

n+m

denote the order statistics of the union of the two samples and define

�i =
{+1 if Z∗

i =Xj for somej,

−1 if Z∗
i = Yj for somej,

i = 1,2, . . . , n+m. Put

S0 = 0, Si = �1 + · · · + �i , i = 1,2, . . . , n+m.

Then(S0, S1, . . . , Sn+m) is a random walk path withSn+m = n − m and under H0 each
of them has the same probability. This idea of Gnedenko and Korolyuk enables one to
determine the distributions of certain statistics by reducing the problems to combinatorial
enumeration.

In a series of papers, Professor Vincze and his collaborators presented a number of results
on this subject. His first result concerns the joint distribution of the maximum and its location
in the case ofn=m. Define

B+
n = n max

(x)
(Fn(x)−Gn(x))= max

1� i�2n
Si

and letR+
n be the first indexi for which this maximum is achieved.
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Moreover, put

Bn = n max
(x)

|Fn(x)−Gn(x)| = max
1� i�2n

|Si |

and letRn be the first indexi for which this maximum is achieved.
Then, underH0, Vincze (1958)showed

P(B+
n = k, R+

n = r)= k(k + 1)

r(2n− r + 1)

(
r

(r+k)/2
) (

2n−r+1
n−(r+k)/2

)
(

2n
n

) ,

k = 1,2, . . . , n; r = k, k + 2, . . . ,2n− k.
Concerning the joint limiting distribution, it was shown that

lim
n→∞ P

(
B+
n√
2n
<y,

R+
n

n
< z

)

=
√

2

�

∫ y

0

∫ z

0

u2

(v(1 − v))3/2
exp

(
− u2

v(1 − v)

)
dudv.

Furthermore,

P(Bn = k, Rn = r)= 2A(k)r A
(k+1)
2n−r+1(

2n
n

) ,

with

A(k)r =
∞∑
j=0

(−1)j
(2j + 1)k

r


 r
r + k

2
+ jk




and

lim
n→∞ P

(
Bn√
2n
<y,

Rn

n
< z

)
=
√

8

�

∫ y

0

∫ z

0
f (u, v) f (u,1 − v)dudv,

where

f (y, z)= y

z3/2

∞∑
j=0

(−1)j (2j + 1)e−((2j+1)2y2)/2z.

Reimann and Vincze (1960)studied the case of different sample sizes. Define

B+
n,m = max

(x)
(nFn(x)−mGm(x))= max

1� i�n+m Si

and letR+
n,m be the first indexi for which this maximum is achieved.
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Furthermore, put

Bn,m = max
(x)

∣∣∣∣nFn(x)−mGm(x)+ m− n

2

∣∣∣∣− m− n

2

= max
1� i�n+m

∣∣∣∣Si + m− n

2

∣∣∣∣− m− n

2
,

and letRn,m be the first indexi for which this maximum is achieved. Letm>n. It was
shown that

P(B+
n,m = k)= 2k + 1 +m− n

m+ k + 1

(
m+n
n−k

)
(
m+n
n

)
and

P(Bn,m = k)= 1(
m+n
n

) ∞∑
j=−∞

((
m+ n

m+ js

)
−
(

m+ n

m+ k + js

))

= 2m+n+1

s
(
m+n
n

) ∞∑
l=1

cosm+n l�
s

sin
kl�
s

sin
(s − k)l�

s
,

with s=2k+m−n. Joint distributions of(B,R) and limiting distributions were also given.
These Reimann–Vincze statistics are different from the usual Kolmogorov–Smirnov

statistics sup(x)(Fn(x) − Gm(x)) or sup(x)|Fn(x) − Gm(x)|, but have the advantage of
easier computations of their distributions.Koul and Quine (1974)have shown that when
the sample sizes are slightly different only, then the Bahadur efficiency of Reimann–Vincze
statistics relative to the Kolmogorov–Smirnov statistics is 1.

Vincze (1959, 1963), proposed the use of generating functions to determine the above
distributions and joint distributions. It was shown that

∞∑
n=k

2n−k∑
r=k

(
2n

n

)
P(B+

n = k, R+
n = r)vrwn

= 22k+1vkwk

(1 + √
1 − 4v2w)k(1 + √

1 − 4w)k+1

and

∞∑
n=k

2n−k∑
r=k

(
2n

n

)
P(Bn = k, Rn = r)zr−kwn−k

= 2
(1 + �(w))k+1(1 + �(z2w))k

(1 + (�(w))k+1)(1 + (�(z2w))k)
,

with

�(z)= 1 − √
1 − 4z

1 + √
1 − 4z

= 4z

(1 + √
1 − 4z)2

.
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Now let

(X∗
1<X

∗
2< · · ·<X∗

n), (Y ∗
1 <Y

∗
2 < · · ·<Y ∗

n )

denote the ordered samples. Then

�n =
n∑
i=1

I {X∗
i > Y

∗
i } = 1

2

2n∑
i=1

(I {Si >0} + I {Si−1 = +1, Si = 0})

is the so-called Galton statistics.Chung and Feller (1949)showed that�n is uniformly
distributed, i.e.,

P(�n = g)= 1

n+ 1
, g = 0,1,2, . . . , n.

Csáki and Vincze (1961)considered the number of crosses

�n =
2n−1∑
i=1

I {Si = 0, Si−1Si+1<0}

and showed that

P(�n = "− 1)= 2"

n

(
2n
n−"

)
(

2n
n

) , "= 1,2, . . . , n

and

lim
n→∞ P(�n < y

√
2n)= 1 − e−2y2

, y�0.

The joint exact and limiting distributions of(�n, �n) were also given, namely,

P(�n = g, �n = "− 1)= 1(
2n
n

) "2

2g(n− g)

(
2g

g − "/2

)(
2n− 2g

n− g − "/2

)

for " even, and

P(�n = g, �n = "− 1)

= 1(
2n
n

) "2 − 1

4g(n− g)

((
2g

g − ("+ 1)/2

)(
2n− 2g

n− g − ("− 1)/2

)

+
(

2g

g − ("− 1)/2

)(
2n− 2g

n− g − ("+ 1)/2

))

for " odd. For the joint limiting distribution, it was shown that

lim
n→∞ P(�n�zn, �n�y

√
2n)

=
√

2

�

∫ y

0

∫ z

0

u2

(v(1 − v))3/2
exp

(
− u2

2v(1 − v)

)
dudv.
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Another use of the generating function method is found inCsáki and Vincze (1963b),
where the joint distribution of the maximum and the number of crosses was given in the
form

∞∑
n=1

(
2n

n

)
P
(

max
x

|Fn(x)−Gn(x)| = k

n
, �n = "− 1

)
zn

= 2

(
w − wk

1 − wk+1

)"
, ", k = 1,2, . . . ,

where

w = 1 − √
1 − 4z

1 + √
1 − 4z

, |z|< 1

4
.

These and related results were presented by Vincze on a number of occasions in confer-
ences, including the 4th, 5th and 6th Berkeley Symposium on Mathematical Statistics and
Probability.

Vincze (1961) considered two-dimensional samples(X(1)i , X
(2)
i ) and (Y (1)i , Y

(2)
i ),

i = 1,2, . . . , n from distributions having theoretical distribution functionsF(x, y) and
G(x, y), resp. Empirical distribution functions are denoted byFn(x, y) andGn(x, y), resp.
TestingF =G, he proposed to choose�=y randomly according to the distribution function
H(y)=F(∞, y) and consider the maximum deviation betweenFn(x, �) andGn(x, �). The
following distributions were determined:

P
(

max
(x)
(Fn(x, �)−Gn(x, �))<

k

n

)

= 1

(2n+ 1)
(

2n
n

) n∑
i=0

n∑
j=max(0,i−k)

(
2n− i − j

n− i

)((
i + j

i

)
−
(
i + j

i − k

))

and

P
(

max
(x)

|Fn(x, �)−Gn(x, �)|< k
n

)

= 1

(2n+ 1)
(

2n
n

) n∑
i=0

min(n,i+k)∑
j=max(0,i−k)

(
2n− i − j

n− i

) ∞∑
h=−∞

(−1)k
(
i + j

i + hk

)
.

Vincze’s idea in determining joint distributions was to construct tests based on a pair of
statistics (instead of one single statistic) in order to improve the power of the tests.Vincze
(1965, 1967, 1968a)studied the power function of several tests based on the empirical
distribution function. He computed the power function of the two-sample Smirnov test and
showed by numerical examples that the power can be increased by using a pair of statistics
instead of one statistic. In particular, he considered the maximum and its location as a pair
of statistics.

In Vincze (1970, 1972), several problems are treated concerning Kolmogorov–Smirnov
statistics. Among others an explicit formula is given for the two-sample case for discontin-
uous random variables and a discussion is given in the two-dimensional case.
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Finally, we mention several results inCsáki and Vincze (1961, 1963a, 1964), concerning
equivalence relations, proved by bijections. Define the following quantities:

�′
n =

2n−1∑
i=1

I {Si−1 = 0, Si = +1},

�n =
2n∑
i=1

I {Si >0},

�" = min{i : Si = "}.
Then we have

{�n = "− 1, S1 = +1} ⇐⇒ {�2" = 2n},
{B+
n = ", R+

n = r} ⇐⇒ {�′
n = ", �n = r}.

Here{· · ·} ⇐⇒ {· · ·} means that there is a bijection between the two sets of random walk
paths.

These relations are valid in the case whenS2n = 0. Now consider the general case, i.e.,
no restriction on the terminal point. Define

2�(2k)2n =
2n∑
i=1

(I {Si >2k} + I {Si−1 = 2k + 1, Si = 2k}).

Then

{�(2k)2n = g} ⇐⇒ {S2n−2g = S2n = 2k}.
The last relation implies the following distribution result:

P(�(2k)2n = g)= 1

22n

(
2g

g

)(
2n− 2g

n− g + k

)
, g = 1, . . . , n− k.

In casek = 0, we recover the finite arcsine law ofChung and Feller (1949).

3. Information theory

Vincze (1960)gave an interpretation of theI-divergence as below, concerning the infor-
mation of a continuous random variable relative to “the distribution of our interest”.

The entropy of a system of eventsA1, A2, . . . , An, in the caseP(Ai)=pi (i=1,2, . . . , n),
isEn =∑n

i=1pi log(1/pi). Consider the quantity

In = log n− En =
n∑
i=1

pi lognpi, 0�In� log n,

which is called the “information of the system of events”. Let� be a continuous random
variable with distribution functionF(x)and density functionF ′(x)=f (x)>0 for any value



E. Csáki / Journal of Statistical Planning and Inference 135 (2005) 3–17 11

of x. Vincze introduces a distribution function	 called the “distribution of our interest”.
Consider a system of divisions of the real line such that the points of division are regarded
as the quantiles of a distribution function, that is,	(x(n)k ) = k/n, k = 1,2, . . . , n − 1;
n= 1,2, . . . ,	(−∞)= 0,	(∞)= 1. For eachn, the information of the system of discrete
eventsA(n)i = {x(n)i−1��<x(n)i } (i = 1,2, . . . , n) is

In,	(�)=
n∑
i=1

(F (x
(n)
i )− F(x

(n)
i−1)) log(n(F (x(n)i )− F(x

(n)
i−1))),

or, after the substitution of 1/n= 	(x(n)i )− 	(x(n)i−1),

In,	(�)=
n∑
i=1

(F (x
(n)
i )− F(x

(n)
i−1)) log

F(x
(n)
i )− F(x

(n)
i−1)

	(x(n)i )− 	(x(n)i−1)
.

Assuming that	′(x)=
(x)>0 for all realx, by a limiting process one obtains the relation

lim
n→∞ In,	(�)=

∫ ∞

−∞
f (x) log

f (x)


(x)
dx = I	(�),

which is the so-calledI-divergence (Kullback, 1959). The expressionI	(�) can be regarded
as the information of the random variable relative to the distribution	 of our interest.

For another use ofI-divergence as treated inVincze (1974), we state the following result
of Sanov (1957): letX be a random variable whose distribution function is	(x) andF(x)
be any distribution function such that the Borel measures�	 and�F induced, respectively,
by 	(x) andF(x) are equivalent. Let	N(x) be the empirical distribution function ofX
after a large numberN of independent trials; then for everyε >0

P
(

sup
x

|	N(x)− F(x)|<ε
)

� exp(−NI),

whereI=∫ log[dF(x)/d	(x)] dF(x) is theI-divergence. On the basis of this result,Vincze
(1974)gives a correct formulation of the maximum-probability principle valid for both con-
tinuous and discrete random quantities. The principle consists in finding the distribution
functionF(x) which minimizes theI-divergence under the constraints

∫
x dF(x) = m �=∫

x d	(x) and
∫

dF(x) = 1. It is then shown that theI-divergence is the natural exten-
sion to continuous random variables of Shannon’s formula for discrete entropy. Conse-
quently, the maximum-probability principle provides an information-theoretical foundation
of statistical mechanics, as suggested byJaynes (1957), who considered only the discrete
case.

Vincze (1975)also extends the maximum-probability principle to the case where the
components of the system are not statistically independent, and for illustration he discusses
the derivation of the Bose–Einstein and the Fermi–Dirac distributions.

Further results of Vincze in this area can be found inPuri and Vincze (1989, 1990, 1992),
Vincze and T˝orös (1997)andVincze (1962, 1968b, 1975).
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4. Cramér–Fréchet–Rao inequality

LetX=(X1, X2, . . . , Xn)be a sample from a distribution having (joint) densityp(x; �)=
p(x1, x2, . . . , xn; �) with respect to a measure�, where� is a parameter. Lett (X) be an
unbiased estimator ofg(�), i.e.E�(t (X))= g(�). Cramér (1946), Fréchet (1943)andRao
(1945)concluded the following inequality:

Var�(t (X))�
(g′(�))2

I (�)
,

with

I (�)=
∫ (

�p
��

)2

p(x; �)dx.

For fixed�, �′, Vincze (1979, 1981)considered the mixture

p� = p�(x; �, �′)= (1 − �)p(x; �)+ �p(x; �′), 0< �<1

with � being a new parameter. Then

�̂ = t (X)− g(�)

g(�′)− g(�)

is an unbiased estimator of�.
It follows that

Var�(�̂)�
1

J�(�, �
′)

,

where

J�(�, �
′)=

∫
(p(x; �′)− p(x; �))2

p�(x; �, �′)
d�.

Then

(1 − �)Var�(t (X))+ � Var�′(t (X))� 1

J�(�, �
′)

− �(1 − �)

and in the case when Var�(t (x)) does not depend on�, Vincze concluded the following
lower bound:

Var(t (X))� sup
�

sup
�′

�(1 − �)(g(�′)− g(�))2
(

1

�(1 − �)J�
− 1

)
.

In certain cases this gives a reasonably good bound. This problem was further investigated
by Puri and Vincze (1985), Govindarajulu and Vincze (1989)andVincze (1992, 1996). It
was shown among others that for the translation parameter of the uniform distribution this
lower bound is of ordern−2, which is attainable.
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5. Estimation of density and its derivatives

Let f (x) be a density on the interval(a, b) and for positive integers consider a partition
a = x

(n)
0 <x

(n)
1 <x

(n)
2 < · · ·<x(n)n = b. Put

s
(n)
k =

∫ x(n)k+1

x
(n)
k

tf (t)dt

∫ x(n)k+1

x
(n)
k

f (t)dt
, k = 0,1,2, . . . , n− 1.

Rényi (1952, personal communication) raised the question of whetherf (x) can be
determined if for eachnwe know{s(n)0 , s

(n)
1 , s

(n)
2 , . . . , s

(n)
n−1} for a partition, such that

lim
n→∞ max

1� i�n
(x
(n)
i − x

(n)
i−1)= 0.

Vincze (1954)answered this question in the affirmative. His idea was to show that

s(u, v)− (u+ v)/2

(v − u)2
→ 1

12

f ′(x)
f (x)

, whenu, v → x,

where

s(u, v)=
∫ v
u
tf (t)dt∫ v

u
f (t)dt

.

This was extended byGupta and Vincze (1991)as follows:

2r (2r + 1)!!
∫ v
u
Lr(t; u, v)f (t)dt

(v − u)r+1 → f (r)(x), whenu, v → x,

wheref (r) denotes therth derivative off andLr(t; u, v) denotes the Legendre polynomial
of degreer belonging to the interval(u, v) normalized such that

∫ v

u

L2
r (t; u, v)dt = v − u

2r + 1
.

Now suppose we want to estimate

I =
∫ b

a



(
f ′(x)
f (x)

)
f (x)dx,

where
(y) is a given function. For example,
(y)= y2.
Assume that(X1, . . . , XN) is a random sample taken from a population with the distri-

bution function having the densityf (x). For a partitionx0 = a <x1<x2< · · ·<xn = b,
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introduce the following notations:

�i =
N∑
j=1

I {xi−1�Xj <xi},

X̄(i) = 1

�i

N∑
j=1

XjI {xi−1�Xj <xi},

mi = xi−1 + xi

2
, di = 1√

12
(xi − xi−1).

Csáki and Vincze (1977)showed that under certain regularity conditions,

In =
n∑
i=1




(
X̄(i) −mi

d2
i

)

is a consistent estimator ofI, asN → ∞.
A related question was treated inCsáki and Vincze (1978)as follows. Under the previous

notation forX̄(i), consider

�̄2
n =

n∑
i=1

(
X̄(i) − Ei

�i

)2

�i ,

where

Ei = E(X1 | xi−1�X1<xi),

�2
i = Var(X1 | xi−1�X1<xi).

It was shown that (for fixedn), asN → ∞, the limiting distribution of the above defined
�̄2 statistics ischi-squarewith n degrees of freedom. This provides an alternative method
for a goodness of fit test instead of the usual Pearson’s chi-square test.

6. A characterization problem

Rényi and Vincze posed the following question: let

f (t)= 1 + a1t + a2t
2 + · · · + ant

n + · · ·
be an entire function. Suppose that, on the one hand,

pi = ait
i

f (t)
, i = 1,2, . . . (6.1)

is a probability distribution for all fixedt >0, i.e.,

∞∑
i=0

ait
i

f (t)
= 1, t >0,
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and, on the other hand, for eachi = 0,1,2, . . .

ai t
i

f (t)
(6.2)

is a density, i.e.,∫ ∞

0

ait
i

f (t)
dt = 1, i = 0,1,2, . . . .

Is it true thatf (t)= et?
It is clear that forf (t)= et , ai = 1/i!, (6.1) is the Poisson distribution with parametert,

while (6.2) is a gamma density. The converse, i.e. to show thatf (t)=et is the only solution,
proved to be a rather hard problem. This (open) problem was also mentioned in a book by
Hayman (1967).

In attacking this problem, Vincze and his coauthors (Hayman and Vincze, 1978, 1979;
Hall and Vincze, 1981; Vincze, 1984, 1988; Csordás and Vincze, 1992), though they did
not solve the problem completely, made significant steps toward the solution and obtained
many interesting side results. It was shown inHayman and Vincze (1978)that

et−c
√
t < f (t)< et+c

√
t

with some constantc >0. Based on this result, a final answer (i.e., under the given conditions,
it follows thatf (t)= et ) was given byMiles and Williamson (1986).
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